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Abstract A strategy for reducing the number of elec-
tronic states which need to be incorporated into a diato-
mics-in-molecules description of prototypical condensed
phase processes is demonstrated. The selection of a
problem-adapted representation is based on symme-
try properties of the molecular basis set and its distur-
bance by the external potential due to the environment.
Using the B ← X excitation of Br2 in solid Argon as
an example, we show that the energy range accessible
via a Franck–Condon transition can approximately be
described by 17 instead of all 36 valence states. The
approach shall be particularly useful for reducing the
numerical effort of semiclassical and quantum dynam-
ics simulations.

Keywords Diatomics-in-molecules ·Halogen ·
Rare gas matrix ·Model Hamiltonian · Predissociation

1 Introduction

Based upon a simple composition and the properties of
its constituent parts, dihalogen molecules embedded in
rare gas matrices at low temperatures continue to draw
attention as prototype condensed phase systems. From
the experimental point of view it is the chromophore,
spatially fixed in an inert environment, together with
a broad knowledge of its gas phase spectroscopy, that
allows spectroscopic investigation [1] and even coherent
control [2,3] of fundamental condensed phase phenom-
ena via optical laser pulses. From the theoretical point
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it is their system-bath nature that makes these systems
accessible for a detailed description [5,6]. However, this
is not as trivial as it seems since the dynamics often
involves many electronic states which can be mixed due
to the coupling to specific nuclear degrees of freedom.
Consequently, a key issue is the treatment of the relevant
interactions at a maximum of accuracy and a minimum
of computational costs.

For both purposes the semiempirical diatomics-
in-molecules (DIM) method has turned out to be a
rather successful approach. Introduced by Ellison in
1963 [7] this method was originally designed to calcu-
late the electronic structure of polyatomic molecules
just from diatomic and atomic potentials without explicit
determination of interaction integrals. Later Tully
refined this method and used DIM potential energy sur-
faces (PES) for studying molecular collision dynamics
[8,9]. Starting from the 1990s different variants of the
DIM method and closely related approaches have been
used especially for the simulation of the photodissoci-
ation dynamics of various halogen – rare gas (X–Rg)
species. Gersonde and Gabriel [10] have studied the
photodissociation of HCl and Cl2 in Xe crystals, Law-
rence and Apkarian [11] the spin–orbit transitions of I
in crystalline Xe and Kr, Batista and Coker [12–14] simu-
lated the photodissociation and recombination dynamics
of I2 in liquid and solid Xe and Ar and the defragmen-
tation dynamics of I−2 Arn clusters. At about the same
time Gerber et al. [15,16] investigated the nonadiabat-
ic dissociation dynamics of HCl and F2 in solid Ar and
Grigorenko et al. [17–19] analyzed the PES as well as
stability of He–Cl2 and Ar–Cl2 van der Waals clusters
and performed simulations for Cl2 in Ne matrices. Simi-
larly Buchachenko et al. [20–23] worked on the triatomic
X–Rg species Ne–I2, Ar–I2, Kr–I2, He–Cl2, Ar–Cl2, and
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He–Br2. Some recent applications of DIM are strong
field alignment studies for ClF in solid Ar and Kr [24,25],
coherent phonon excitation for Cl2 in Ar [4], and wave
packet dynamics simulations on reduced dimensionality
PES for ClF [26] as well as for F2 [27,28] and Cl2 [29] in
Ar. The DIM method has also been extended to flexible
molecules like I3 [30] in Ar clusters and generalized to
calculate PES for quasistationary and bound states of
polyatomic anions [31].

In this contribution we investigate the system Br2 in
solid Ar, a choice which is motivated by the recent time-
resolved experiments of Schwentner and coworkers on
this system (see, e.g., [2,32,33]), for which no corre-
sponding theoretical studies exist. Among the phenom-
ena of interest are the vibrational wave packet dynamics
in the electronic B state and its control by tailored
laser pulses, the related effect of nonadiabatic transi-
tions to other electronic states (predissociation), and
the role of the coupling to the lattice vibrations leading,
for instance, to the observation of long lasting coherent
phonon vibrations.

The theoretical description of coherent vibrational
wave packets moving on several electronic PES calls for
a quantum treatment, which can be separated into two
parts, that is, the electronic structure problem and the
solution of the time-dependent Schrödinger equation.
This paper solely focusses on the first aspect which is
addressed using the DIM method. Although the basic
idea of the DIM method, that is, a representation of
a polyatomic PES by a sum of pairwise interactions, is
simple, it is a semiempirical approach whose complex-
ity depends on the number of electronic states included.
Already the approximate representation of a dihalo-
gen molecule by two interacting p-atoms gives rise to 36
covalent molecular configurations, all of them have to be
incorporated when using the standard DIM approach.
However, often one is interested in the PES and dynam-
ics of particular states only. For instance, the spectro-
scopic experiments mentioned above address a subset
of states only by virtue of the selectivity provided by the
laser spectrum, e.g., the states accessible by a B ← X
excitation. Thus, in order to reduce the numerical over-
head especially of the related dynamics simulations, it
would be advantageous to have a means to account for
the physically relevant states within the DIM approach
only, without deteriorating the overall accuracy.

In the following we explore the possibility of reduc-
ing the dimensionality of the DIM Hamiltonian to yield
a problem-adapted model Hamiltonian. In particular,
a compact model containing the necessary information
for the treatment of the B ← X excitation in Br2 in
Argon is discussed. The paper is organized as follows.
In Sect. 2 the general formalism of the DIM method is

reviewed putting emphasis on halogen molecules in rare
gas matrices. It is followed by details on the construction
of DIM Hamiltonians in an appropriate basis set repre-
sentation. Our reduction strategy is detailed in Sect. 3.
It consists of three steps: first, symmetry considerations
are utilized to classify and estimate different coupling
types. Second, a Franck–Condon based target energy
interval is defined in order to decide which electronic
states to incorporate into a reduced model. Third, the
effect of state reduction is carefully checked to estimate
the quality and the range of applicability of the model.
Section 4 summarizes our results.

2 DIM method for X2–Rg systems

The basic idea of the DIM method is the description of
a polyatomic molecule in terms of all possible pairwise
interactions between its atoms [7]. It is closely connected
to the valence bond (VB) concept of electron pairs form-
ing bonds between atoms. Underlying is the heuristic
idea of a spatial assignment of electrons to bonds in the
molecule and consequently to single atoms for large in-
ternuclear separations. The electronic wave function of
such a polyatomic “gas” could be expressed as a prop-
erly antisymmetrized product of atomic basis functions.
However, already at moderate internuclear separations
reactive atoms tend to interact and to share their elec-
trons, which now may be assigned to diatomic groups.
For a single X2 guest molecule in a crystal of closed
shell rare gas atoms with 1S0 character the electronic
wave function could be written as an antisymmetrized
product of diatomic functions, representing the halogen
molecule, times s-functions representing individual Rg
atoms. In other words, the product ansatz for the elec-
tronic wave function facilitates the decomposition of the
Hamiltonian in its matrix representation into diatomic
and atomic fragments. Within the DIM method these
matrix elements are parameterized by pair potentials
and atomic energies.

2.1 The molecular X2 Hamiltonian

The choice of an appropriate basis for the diatomic func-
tions depends on the halogen species under consider-
ation. Common to all halogen atoms is the 2P term for
the ground state with an electron hole in the p5-shell
behaving like a single electron with quantum numbers
L = 1 and S = 1

2 . Russel–Saunders coupling (L, S) splits
up the 2P term into 2P3/2 and 2P1/2. The atomic doublet
separation of the heavy halogens Br and I (3,685 and
7, 603 cm−1 [34]) is larger than the dissociation energies
of Br2 and I2 in the molecular excited states. Thus, a
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spatial quantization of the J’s rather than that of the
individual L’s appears in the electric field generated
by the two nuclei (Ja, Jb-coupling). The total electronic
angular momentum along the internuclear axis of the
molecule, �, is obtained by adding the single atomic
quantum numbers MJ : � = |MJa + MJb |. This is then
the only “good” quantum number, the other possible
molecular quantum numbers � = |MLa + MLb | and
� = |MSa+MSb | cannot be assigned separately (Hund’s
coupling case c). To every combination of two MJ val-
ues there corresponds a different molecular state, except
that states differing only in the sign of both MJ’s form
a degenerate pair as long as � �= 0 [35]. A zero order
approximation to the molecular wave function of a
homonuclear dihalogen Xa−Xb can be written as a lin-
ear combination of simple products of non-overlapping
spin–orbit-coupled atomic states, |J, M〉a and |J, M〉b, to
account for its symmetry:

ψ
(X2)
� =

ni∑

i

ci,�|J, M〉a|J′, M′〉b, (1)

where ni is the number of different products |J, M〉a
|J′, M′〉b in ψ

(X2)
� for a given molecular state � with

expansion coefficients ci,�. These approximate molecu-
lar basis functions are listed in Table 1 in the Appendix,
where they are ordered according to their dissociation
products and classified with respect to their symmetry
labels�σw according to Hund’s case c together with their
Hund’s case a 2�+1�σw precursors. Here σ denotes the
sign of the wave function with respect to reflection on
a plane containing the molecular axis and w its par-
ity with respect to the origin. Notice that Buchachenko
and Stepanov [20] have discussed alternative expres-
sions for some Hund’s case c states of the same symme-
try within the same dissociation limit. A general scheme
for building up these functions was given by Chang [36]
and Umanskij and Nikitin [37].

Expressed in the basis of molecular electronic sym-
metry eigenfunctions any intramolecular interaction
couples functions of the same Hund’s case c symmetry
only [38]. The matrix representation of the Hamiltonian
would be block diagonal with respect to these
symmetries, that is, it separates in the given basis into two
4× 4 matrices (0+g , 0−u ) and two 1× 1 matrices (0−g , 0+u ),
each of them being non-degenerate as well as into two
2× 2 matrices (2g, 2u), one 3× 3 matrix (1g), one 5× 5
matrix (1u), and one 1 × 1 matrix (3u), each of them
being doubly degenerate (cf. Table 1). This circumstance
allows us to parameterize the diagonal elements of the
block matrices with the potential energy curves obtained
from ab initio calculations. Such a parameterization is
strictly valid only if the wave functions from ab initio

calculations significantly overlap with the functions of
the DIM basis [39,40]. A heuristic argument for this
overlap criterion would be that the covalent excited
states of a halogen molecule originate from all possi-
ble configurations derived from its σ 2

g π
4
uπ

4
gσ

0
u molecular

orbital ground state configuration and halogen valence
shell p-orbitals are expected to predominantly contrib-
ute to the latter.

2.2 Construction of the X–Rg interaction Hamiltonian

In the following we consider N atoms labeled by the
index i = 1, . . . , N − 2 for the Rg and α = a, b for the
dihalogen. At the heart of the DIM method is the repre-
sentation of the X–Rg interaction in the basis of the X2
molecular states being defined by the molecules’ elec-
tronic angular momentum and thus spatially associated
with its internuclear axis. A halogen-rare gas van der
Waals complex may be imagined as a p-radical inter-
acting with a closed shell s2p6-atom and its resulting
electronic angular momenta can be classified in terms
of �- and �-type interactions. In matrix representation
the interaction Hamiltonian, VXα−Rgi

R , is diagonal with
respect to the p�-, p�̄- and p�-orbitals of the respective
reference frame R (see Fig. 1):

VXα−Rgi
R =

⎛

⎝
V� 0 0
0 V�̄ 0
0 0 V�

⎞

⎠ (2)

The diagonal elements of this matrix can be parame-
terized by empirical potentials obtained from experi-
ments that provide information on the anisotropy of the

Fig. 1 Body frame transformation from the initial internal
(�, �̄,�) reference frame of the Xa–Rgi van der Waals complex
(R) via a laboratory (x, y, z) frame (L) to the final internal (π , π̄ , σ)
reference frame (D) of the diatomic Xa–Xb molecule
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interaction, such as crossed molecular beam scattering
[41] or zero-electron kinetic energy photoelectron spec-
tra [42,43]. In order to express VXα−Rgi

R with respect to
the quantization axis of the dihalogen molecule we fol-
low the approach of Batista and Coker (cf. Fig. 1); for
details see [12]. In a first step an orthogonal matrix TR,L

transforms VXα−Rgi
R from its initial (�, �̄,�) frame R to

the laboratory frame L representing VXα−Rgi
L in a basis

of real p-orbitals with unique orientation:

VXα−Rgi
L = TR,LVXα−Rgi

R TT
R,L. (3)

Since the laboratory frame is the same for all Xα–Rgi

pairs, the VXα−Rgi
L can be summed up for both X-atoms

separately. It is important to notice that summing up the
fragment Hamiltonians in the laboratory frame can con-
siderably save computational time as compared with a
summation at the end of all further transformation steps.
It appears as if this fact has been overlooked in previous
work [10,12,16]. Now a second transformation is used in
order to represent the corresponding partial sums on Xa

and Xb in the (π , π̄ , σ) body frame (D) of the dihalogen
molecule. This is accomplished by another orthogonal
matrix TL,D, which specifies the mutual orientation of
both halogen atoms with respect to the laboratory frame
and results in a new interaction operator VXα−Rg

D :

VXα−Rg
D = TL,D

(
N−2∑

i=1

VXα−Rgi
L

)
TT

L,D. (4)

In Fig. 1 this sequence of transformations is illustrated.
Note that the second step is necessary only if a rotation
of the X2 molecule with respect to the laboratory frame
needs to be taken into account explicitly, e.g., to describe
librational motion.

Being expressed in the basis of real p-orbitals with
the desired orientation, two more transformations are
necessary to represent the halogen – rare gas interaction
Hamiltonian in the basis of the spin–orbit coupled func-
tions. First, a matrix TD,ml which transforms between
real and complex basis functions, is applied as a unitary
transformation to VXα−Rg

D resulting in the complex rep-

resentation VXα−Rg
ml . In a second step the electronic spin

is introduced by an outer product of VXα−Rg
ml with a 2×2

identity matrix I2. The resulting interaction Hamiltonian
VXα−Rg

mlms is now defined in the basis {|ml, ms〉}:
VXα−Rg

mlms = VXα−Rg
ml ⊗ I2. (5)

The final step is the coupling of the electron’s angu-
lar momentum and its spin by a Clebsh–Gordon matrix
Tmlms,JM, transforming between the uncoupled |ml, ms〉
and the coupled representation |J, M〉, in which VXα−Rg

mlms

can be expressed according to:

VXα−Rg
JM = Tmlms,JM VXα−Rg

mlms TT
mlms,JM . (6)

In passing we note that an alternative to this approach
has been given by Buchachenko et al. [20,21], where,
starting from the spin-coupled representation of the
X–Rg interaction Hamiltonian and using a Jacobian
coordinate system, a single Wigner rotation is applied
to transform it to the X2 quantization axis.

2.3 Representation of the atomic fragment
Hamiltonians in the molecular basis

In order to express the fragment interaction Hamiltoni-
ans VXα−Rg

JM of the individual halogen atoms with their
joint quantization axis in a basis of molecular eigenfunc-
tions, a tensor product with an 6 × 6 identity matrix I6
needs to be applied to both matrices:

VXa−Rg
JMaJMb

= VXa−Rg
JM ⊗ I6 (7)

VXb−Rg
JMaJMb

= I6 ⊗VXb−Rg
JM . (8)

This way, the Hilbert space of the molecule is intro-
duced via the tensor product of the Hilbert spaces of
both atoms. Correspondingly, its eigenfunctions can be
expressed by products of atomic eigenfunctions
|J, M〉a|J, M〉b. The transformation of VXa−Rg

JMaJMb
and

VXb−Rg
JMaJMb

to a joint representation in a basis of Hund’s

case c VB-functions |VB〉 = ψ
(X2)
� is accomplished by

the orthogonal transformation:

VX2−Rg
VB = TJM,VB

(
VXa−Rg

JMaJMb
+VXb−Rg

JMaJMb

)
TT

JM,VB , (9)

where the transformation matrix TJM,VB contains the
coefficients given in Table 1. This step allows us to con-
sider all X2–Rg interactions as a perturbation to the
energies of the isolated halogen molecule and the assign-
ment of matrix elements to the symmetry eigenfunctions
of the unperturbed system. Thus, the total electronic
Hamiltonian can be expressed as a sum of the diagonal
matrix HX2

VB of the dihalogen molecule and a non-diag-

onal matrix VX2−Rg
VB for its interaction with the rare gas

crystal. As the interaction between the Rg-atoms is inde-
pendent of the electronic state of the dihalogen mole-
cule, it contributes with the same value to each diagonal
element of the total electronic Hamiltonian, to which it
simply can be added after multiplication with a 36× 36
identity matrix I36:

Hel
VB = HX2

VB +VX2−Rg
VB +

⎛

⎝
N−3∑

i=1

N−2∑

j=i+1

VRgi−Rgj

⎞

⎠× I36.

(10)
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This electronic Hamiltonian parametrically depends on
all nuclear coordinates. Below we will be particularly
interested in the dependence of Hel

VB on the coordi-
nates of the dihalogen molecule for fixed Ar positions.
Upon choosing the Hund’s case c VB basis, HX2

VB is diag-
onal and includes the spin–orbit coupling. The states
can be classified according to their dissociation limits
(cf. Table 1). With respect to the interaction with the
Rg matrix these states can be termed diabatic, whereas
if the full Hamiltonian, Eq. (10), is diagonalized one
obtains adiabatic states expressed as a superposition of
the diabatic ones.

3 Application to Br2 in an Ar matrix

In the following we want to apply the formalism from
Sect. 2 to PES calculations for Br2 in solid Ar. Starting
from a full DIM Hamiltonian we will derive a reduced
model designed such as to describe the B← X transition
and subsequent (predissociation) processes. First, the
matrix elements of the X2-Hamiltonian from Sect. 2.1
are parameterized by Br2 potential energy curves from
spin–orbit coupled contracted configuration–interaction
(SOCI) calculations of Yabushita [44] shown in Fig. 2.

For the representation the Br–Ar interaction we have
used the results of photoelectron spectroscopic data [43]
which give the spin-coupled V3/2,1/2, V3/2,3/2 and V1/2,1/2
potentials. In order to set up a X–Rg-Hamiltonian
according to Sect. 2.2, the spin-uncoupled V�- and
V�-potentials can be obtained according to the follow-

Fig. 2 Ab initio SOCI potential energy curves for the lower 23
Hund’s case c excited states of Br2 arising from its ground state
σ 2

g π
4
uπ

4
gσ

0
u MO configuration [44] (see also Ref. [34]). Potential

energy curves are ordered according to their Franck–Condon exci-
tation energy from ground state minimum, Hund’s case a and c
labels are given in Table 1

ing the relations [45]:

V� = ( 2
3	+ V3/2,1/2)V3/2,3/2 − (	+ V3/2,1/2)V3/2,1/2

V3/2,3/2 − V3/2,1/2 − 1
3	

(11)

V� = V3/2,1/2, (12)

with 	 being the bromine spin–orbit splitting constant.
The geometry of a single Br2 guest molecule fixed

in an Ar crystal is shown in Fig. 3. It occupies a dou-
ble substitutional site pointing in 〈110〉 direction of the
face-centered cubic (fcc) Ar lattice.

For a rectangular cut-out of the crystal along this
direction the molecule is surrounded by an arrangement
of Ar atoms such that there is an overall D2h symmetry.
Starting from this situation and fixing the Ar atoms at
their regular lattice positions we will consider two sce-
narios which we expect to be predominant at low tem-
peratures: First, a D2h symmetric elongation of the Br2
molecule with respect to its center of mass. Second, an
elongation for a configuration where the Br2 molecular
axis is tilted with respect to the 〈110〉 direction such that
the symmetry is reduced to Ci. This situation shall illus-
trate the general effect of symmetry lowering, mimicking
for instance, the effect of the Br2 zero-point librational
motion on the electronic couplings.

3.1 Classification of coupling types

The key step towards a reasonable reduction scheme is
an investigation of the structure of the DIM Hamilto-
nian matrix which will lead us to its partitioning into

Fig. 3 Br2 molecule (filled circles) in a double substitutional site
pointing in 〈110〉 direction (thick solid line) of an Ar fcc lattice
(empty circles). Periodic boundary conditions have been used for
an orthorhombic box with 116 atoms. Note, that a convergence
check has been performed using 968 atoms
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Fig. 4 Potential energy
curves for the DIM valence
states along the Br2 bond
distance for fixed Ar positions
and D2h symmetry. The data
have been obtained by
block-diagonalization of the
Hamiltonian, thus
incorporating �σw
intra-symmetric couplings in a
first diagonalization step. For
labeling of the states,
compare Table 1
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certain submatrices. Starting point is the block diagonal
structure of the isolated halogen molecule’s Hamilto-
nian in the basis of Hund’s case c symmetry eigenfunc-
tions (see Eq. (1) and Table 1). According to Sect. 2.3 the
effect of the rare gas atoms can then be understood as
a perturbation, which induces couplings among differ-
ent molecular states. Regardless of its specific structure,
this perturbation may be separated into components

having the same symmetry or a different symmetry as
compared to the isolated molecule. Such grouping can
be accomplished, if we impose the isolated molecule’s
symmetry blocks as a mask on the total Hamiltonian
matrix. Accordingly, the off-diagonal elements within a
single block of given symmetry may be called intra-sym-
metric couplings. They couple the corresponding diago-
nal elements (molecular potential energy curves) among
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Fig. 5 Manifold of potential
energy curves obtained after
the first diagonalization step
(block-diagonalization)
compared to the complete
diagonalization
(inter-symmetric couplings
incorporated) for Br2 in Ar in
D2h and Ci symmetry
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each other. In contrast, matrix elements that couple
blocks with different symmetries are termed inter-sym-
metric couplings.

The role of this two coupling types can be investigated
employing a two-step diagonalization procedure. In the
first step the intra-symmetric couplings are accounted
for only (pre-diagonalization), in the second step the
inter-symmetric couplings are incorporated in order
to complete the diagonalization. In Fig. 4, the corre-
sponding potential curves along the Br2 bond distance
obtained from the first diagonalization step are depicted
for each symmetry block of the D2h-Hamiltonian. It is
seen that the intra-symmetric couplings cause avoided
crossings between the potential energy curves within
each symmetry block. Moreover, these avoided cross-
ings determine the splitting among that potential energy
curves, which would have the same gas phase dissocia-
tion limit at large internuclear separations. Note, that
the symmetry-based twofold degeneracies of states for
� �= 0 are not lifted during this first diagonalization
step.

The effect of incorporating the inter-symmetric cou-
plings into the second diagonalization step is shown in
Fig. 5, where the manifold of potential energy curves
obtained from the first step versus the complete diag-
onalizion is depicted. Comparing both sets of poten-
tial energy curves for the D2h-Hamiltonian one finds
almost identical results. Obviously, the inter-symmetric
coupling is negligible or even absent here so that we can

consider the different symmetry blocks of the Hamilto-
nian to be approximately independent, even in the rare
gas matrix environment.

In addition to the D2h symmetry preserving elon-
gation of the Br2 bond also its tilting with respect to
the 〈110〉 direction is of interest reflecting the effect of
symmetry breaking. It gives rise to an electronic Ham-
iltonian of Ci symmetry whose eigenvalues are investi-
gated in the lower panels of Fig. 5 for a tilting of 10◦
and 5◦ towards the 〈100〉 and 〈001〉 directions, respec-
tively. First, we consider the effect of intra-symmetric
couplings which is most pronounced for large internu-
clear separations (>7 a0) of the Br atoms. As a gen-
eral trend the intra-symmetric coupling type leads to an
enhanced splitting of the potential energy curves. This
is to be expected since as compared to the D2h case
which is in fact similar to the D∞h point group of the
isolated molecule, the initial two-fold degeneracies are
lifted. Including the inter-symmetric couplings into the
diagonalization procedure further enhances this effect
as shown in the right column of Fig. 5. Nevertheless,
it is important to note that one still can consider the
interplay of both coupling types independently for the
three dissociation limits of the free Br2 molecule – at
least as far as moderate bond length are concerned.
Using this separability by dissociation limits together
with our knowledge about the two coupling types we
are now ready for the targeted reduction of the DIM
Hamiltonian matrix.



528 Theor Chem Acc (2007) 117:521–533

Fig. 6 Comparison of the 17
adiabatic potential energy
curves calculated from
reduced Hamiltonians for Br2
in Ar in D2h and Ci symmetry,
the dashed line denotes the
Franck–Condon target
energy. The lower two panels
show the percentage error
with respect to the complete
Hamiltonian eigenvalues for
energies up to 0.04 Hartree -0.07
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3.2 A reduced target-state DIM hamiltonian

When we are aiming at a specific reduction of a DIM
Hamiltonian towards a model Hamiltonian, the main
criterion must be, of course, the phenomenon under
investigation, which itself dictates the energy and coor-
dinate range to be addressed. In the following our goal
is to taylor a minimal model Hamiltonian for descrip-
tion of the B ← X-state excitation of Br2 in solid Ar
starting from a Franck–Condon vertical transition at
the ground state equilibrium bond length. It should be
noted though that recent investigations of the B state
dynamics (see, e.g., Ref. [33]) start from an excitation
into the bound part of the B state PES which is con-
siderably below the vertical Franck–Condon threshold
mentioned above and thus well within the target energy
range.

Envisaging processes like predissociation and subse-
quent population of lower lying electronic states we
expect that a reduced model shall incorporate all the
molecular potential curves which are below to the
B-state PES. Accordingly, its basis is defined by
the X(0+g )-, A′ (2u)-, A (1u)-, 3�u(0−u )-, B (0+u )-, C (1u)-,
3�g(2g)-, a (1g)-, a′ (0+g )-, 3	u(3u)- and 13�+u (0−u )-states.
Since such basis set truncation restricts the possible com-
position of adiabatic states, the validity of the minimal
Hamiltonian has to be checked, e.g., by comparing its
eigenvalues and eigenvectors to those obtained from its
corresponding complete VB representation.

In Fig. 6 the eigenvalues of the reduced D2h and
Ci Hamiltonians are shown together with their relative
errors with respect to the complete Hamiltonian’s
eigenvalues. Within the considered energy interval of
0.04 Hartrees, only the upper three eigenvalues in both
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Fig. 7 Composition analysis of the highest adiabatic state of the reduced Hamiltonian obtained by the population of its VB basis
functions ordered into symmetry blocks (1–4: 0+g , 5: 0−g , 6–11: 1g, 12–15: 2g, 16–19: 0−u , 20: 0+u , 21–30: 1u, 31–34: 2u, 35–36: 3u)

cases show significant errors up to 10% at 5 a0 inter-
nuclear distance which vanish for a bond length≥ 5.5a0.
At separations beyond 9–10 a0 the lower four eigen-
values, particularly for the reduced D2h Hamiltonian,
deviate from the reference Hamiltonian. However,
taking into account that the Franck–Condon vertical
transition from electronic ground state with about 0.02
Hartree is far below the given energy interval the per-
formance of both model Hamiltonians is very good.

A more detailed view is provided by a population
analysis of the adiabatic eigenvectors in terms of the
VB states. Inspired by the overlap criterion of Kuntz
et al. [39,46] and based on the subspace representation
of our Hamiltonians, we have used the population of

single VB basis functions as a measure for the compo-
sition of the adiabatics states of the reduced and full
Hamiltonians. Exemplary we show in Fig. 7 the results
for the adiabatic state that is highest in energy. This state
is close to the set of states discarded from the model and
we expect mixing effects to be most important here.
Inspecting Fig. 7 we notice that the results for the com-
plete and reduced D2h-Hamiltonians agree very well if
we take into account that this state falls in the energeti-
cally accessible range only after R > 5.5 a0 (dashed line
in Fig. 6). The agreement somewhat deteriorates for the
Ci-Hamiltonian. From the populations of the VB states
in Fig. 7 we find that the reduced representation resem-
bles the complete one in a bond length range from 5.5
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to about 7.5 a0. Beyond 7.5 a0 several VB states which
are not part of the reduced model start to become pop-
ulated. However, targeting, for instance, on the initial
predissociation the performance of the reduced model
is still very good. Note, that the highest adiabatic state
is mainly characterized by B-state contributions, which
itself is the uppermost state by energy within the sub-
space of chosen basis functions. It further belongs to the
second gas phase dissociation limit. In other words, an
improved model, say for the Ci case should probably
include some more states in this molecular dissociation
limit (cf. Table 1).

3.3 B-state predissociation: Br2 vs. I2

Finally, it is instructive to focus on the region, where
the dissociative potentials cross the B-state as shown
in Fig. 8. As discussed above this region is particularly
well reproduced by the reduced DIM model. The role
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Fig. 8 Close-up view of the crossing region of the B(0+u )-state
with the C (1u)-, 3�g (2g)-, a(1g)-, a′ (0+g )-, 3	u (3u)- and 13�+u
(0−u )-state (from left to right) for Br2 in Ar and I2 in Ar in D2h
symmetry

of these crossings for predissociation of the B-state and
their dependence on the environmental symmetry has
been investigated by Coker et al. [12,47] for molecular
iodine in condensed rare gases. Next to Br2 in Ar we
therefore consider I2 in Ar as a reference case. Adapt-
ing the terminology from Ref. [47] we notice that, apart
from the different locations of the B-state crossings, the
pattern of quasi-nonavoided crossings (weakly interact-
ing curves) and avoided crossings (strongly interacting
curves) is similar in both systems. On closer examination
two common characteristics of these crossings can be
found. In case the B-state with quantum number � = 0
is crossed by a doubly degenerate state with� �= 0, there
results one avoided crossing and one non-avoided cross-
ing. In other words a coupling exists with only one of
the degenerate states. The avoided crossing should then
give rise to adiabatic dynamics, whereas the nonavoided
crossing should give rise to a purely diabatic dissociation
dynamics. In case that the B-state is crossed by a non-
degenerate state with quantum number � = 0, there is
only an avoided crossing and consequently either bound
excited state dynamics or predissociative dynamics are
to be expected, depending on whether the halogen mol-
ecule follows the upper or the lower one of the resulting
adiabatic potential energy curves.

4 Summary

The representation of the halogen, rare gas interac-
tion in a basis of molecular symmetry eigenfunctions
allows the grouping of Rg-induced interactions into
intra-symmetric and inter-symmetric couplings. Their
separate role can be analyzed by a two-step diagonaliza-
tion scheme as shown in Sect. 3.1. With this classification
of coupling types the molecule – rare gas interaction –
can be interpreted in terms of molecular Hund’s case c
symmetries, which also form the basis of the selection
rules for heavy halogen molecules in gas phase spectros-
copy. Based on the leading role of intra-symmetric cou-
plings and the spin–orbit splitting induced energy gap
within the symmetry blocks, a separable treatment of the
mutual interplay of intra- and inter-symmetric couplings
for the three dissociation limits of the isolated molecule
becomes possible. This separability facilitates the iden-
tification of a relevant set of potential energy curves.
Exemplary we have chosen a problem adapted Hamil-
tonian of reduced complexity for the specific description
of the B ← X excitation and subsequent photodissoci-
ation for Br2 in solid Ar. This model Hamiltonian was
found to reasonably reproduce all features of a complete
DIM-Hamiltonian within the relevant regime of B-state
crossings in a comparative study based on the adiabatic



Theor Chem Acc (2007) 117:521–533 531

eigenvalues and the composition of adiabatic eigenfunc-
tions. Additionally, the result for Br2 in Ar were com-
pared to I2 in Ar as a closely related benchmark system
using the same reduction scheme. Of course, the pattern
of state crossings is the same in the two cases. How-
ever, the overall shifts of the different potential energy
curves with respect to each other will lead to a different
dynamics, for instance, in predissociation.

The present approach to tailored reduced model
Hamiltonians for condensed phase processes shall be
particularly relevant for dynamics simulations. Here, it
may serve to reduce the numerical effort not only in

Appendix

the quantum domain but also within the framework
of quasiclassical surface hopping. Respective work for
Br2 in Ar for which a number of ultrafast spectroscopic
experiments have been reported ([2,32,33]) are under
way.
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Table 1 Molecular Hund’s Case c VB states and their case a origins (adapted from Refs. [12,49])

2�+1�σw �σw |JM〉a|JM〉b composition Dissociation products

X, 11�+g 0+g 1√
2

{
| 32 , 1

2 〉a| 32 ,− 1
2 〉b − | 32 ,− 1

2 〉a| 32 , 1
2 〉b

}
2P3/2 +2 P3/2

a′,3 �−g 0+g 1√
2

{
| 32 , 3

2 〉a| 32 ,− 3
2 〉b − | 32 ,− 3

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P3/2

3�g 0+g 1
2

{
| 32 , 1

2 〉a| 12 ,− 1
2 〉b − | 12 ,− 1

2 〉a| 32 , 1
2 〉b + | 32 ,− 1

2 〉a| 12 , 1
2 〉b − | 12 , 1

2 〉a| 32 ,− 1
2 〉b

}
2P3/2 +2 P1/2

21�+g 0+g 1√
2

{
| 12 , 1

2 〉a| 12 ,− 1
2 〉b − | 12 ,− 1

2 〉a| 12 , 1
2 〉b

}
2P1/2 +2 P1/2

B′,3 �u 0−u 1√
2

{
| 32 , 3

2 〉a| 32 ,− 3
2 〉b + | 32 ,− 3

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P3/2

13�+u 0−u 1√
2

{
| 32 , 1

2 〉a| 32 ,− 1
2 〉b + | 32 ,− 1

2 〉a| 32 , 1
2 〉b

}
2P3/2 +2 P3/2

1�−u 0−u 1
2

{
| 32 , 1

2 〉a| 12 ,− 1
2 〉b + | 12 ,− 1

2 〉a| 32 , 1
2 〉b − | 32 ,− 1

2 〉a| 12 , 1
2 〉b − | 12 , 1

2 〉a| 32 ,− 1
2 〉b

}
2P3/2 +2 P1/2

23�+u 0−u 1√
2

{
| 12 , 1

2 〉a| 12 ,− 1
2 〉b + | 12 ,− 1

2 〉a| 12 , 1
2 〉b

}
2P1/2 +2 P1/2

3�g 0−g 1
2

{
| 32 , 1

2 〉a| 12 ,− 1
2 〉b − | 12 ,− 1

2 〉a| 32 , 1
2 〉b − | 32 ,− 1

2 〉a| 12 , 1
2 〉b + | 12 , 1

2 〉a| 32 ,− 1
2 〉b

}
2P3/2 +2 P1/2

B,3 �u 0+u 1
2

{
| 32 , 1

2 〉a| 12 ,− 1
2 〉b + | 12 ,− 1

2 〉a| 32 , 1
2 〉b + | 32 ,− 1

2 〉a| 12 , 1
2 〉b + | 12 , 1

2 〉a| 32 ,− 1
2 〉b

}
2P3/2 +2 P1/2

a,3 �g 1g
1√
2

{
| 32 , 3

2 〉a| 32 ,− 1
2 〉b − | 32 ,− 1

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P3/2

1√
2

{
| 32 ,− 3

2 〉a| 32 , 1
2 〉b − | 32 , 1

2 〉a| 32 ,− 3
2 〉b

}

1�g 1g
1√
2

{
| 32 , 3

2 〉a| 12 ,− 1
2 〉b − | 12 ,− 1

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P1/2

1√
2

{
| 32 ,− 3

2 〉a| 12 , 1
2 〉b − | 12 , 1

2 〉a| 32 ,− 3
2 〉b

}

3�−g 1g
1√
2

{
| 32 , 1

2 〉a| 12 , 1
2 〉b − | 12 , 1

2 〉a| 32 , 1
2 〉b

}
2P3/2 +2 P1/2

1√
2

{
| 32 ,− 1

2 〉a| 12 ,− 1
2 〉b − | 12 ,− 1

2 〉a| 32 ,− 1
2 〉b

}

A,3 �u 1u
1√
2

{
| 32 , 3

2 〉a| 32 ,− 1
2 〉b + | 32 ,− 1

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P3/2

1√
2

{
| 32 ,− 3

2 〉a| 32 , 1
2 〉b + | 32 , 1

2 〉a| 32 ,− 3
2 〉b

}

C,1 �u 1u | 32 , 1
2 〉a| 32 , 1

2 〉b 2P3/2 +2 P3/2

| 32 ,− 1
2 〉a| 32 ,− 1

2 〉b
13�+u 1u

1√
2

{
| 32 , 3

2 〉a| 12 ,− 1
2 〉b + | 12 ,− 1

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P1/2

1√
2

{
| 32 ,− 3

2 〉a| 12 , 1
2 〉b + | 12 , 1

2 〉a| 32 ,− 3
2 〉b

}
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Table 1 continued

2�+1�σw �σw |JM〉a|JM〉b composition Dissociation products

23�+u 1u
1√
2

{
| 32 , 1

2 〉a| 12 ,− 1
2 〉b + | 12 , 1

2 〉a| 32 , 1
2 〉b

}
2P3/2 +2 P1/2

1√
2

{
| 32 ,− 1

2 〉a| 12 ,− 1
2 〉b + | 12 ,− 1

2 〉a| 32 ,− 1
2 〉b

}

3	u 1u | 12 , 1
2 〉a| 12 , 1

2 〉b 2P1/2 +2 P1/2

| 12 ,− 1
2 〉a| 12 ,− 1

2 〉b
3�g 2g

1√
2

{
| 32 , 3

2 〉a| 32 , 1
2 〉b − | 32 , 1

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P3/2

1√
2

{
| 32 ,− 3

2 〉a| 32 ,− 1
2 〉b − | 32 ,− 1

2 〉a| 32 ,− 3
2 〉b

}

1	g 2g
1√
2

{
| 32 , 3

2 〉a| 12 , 1
2 〉b − | 12 , 1

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P1/2

1√
2

{
| 32 ,− 3

2 〉a| 12 ,− 1
2 〉b − | 12 ,− 1

2 〉a| 32 ,− 3
2 〉b

}

A′,3 �u 2u
1√
2

{
| 32 , 3

2 〉a| 32 , 1
2 〉b + | 32 , 1

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P3/2

1√
2

{
| 32 ,− 3

2 〉a| 32 ,− 1
2 〉b + | 32 ,− 1

2 〉a| 32 ,− 3
2 〉b

}

b′,3 	u 2u
1√
2

{
| 32 , 3

2 〉a| 12 , 1
2 〉b + | 12 , 1

2 〉a| 32 , 3
2 〉b

}
2P3/2 +2 P1/2

1√
2

{
| 32 ,− 3

2 〉a| 12 ,− 1
2 〉b + | 12 ,− 1

2 〉a| 32 ,− 3
2 〉b

}

3	u 3u | 32 , 3
2 〉a| 32 , 3

2 〉b 2P3/2 +2 P3/2

| 32 ,− 3
2 〉a| 32 ,− 3

2 〉b
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